

No.50009-0 2012.8.31

SMT Adhesive

Contents

SMT Adhesive – Heat Curable / Dispensing JU-110

Product Information

Note:

This technical data sheet contains product performance assessed strictly under our own test procedures and may not be compatible with the results at end users.

Product features

- SMT adhesive designed for **DISPENSE USE**.
- DOES NOT CONTAIN environmentally hazardous substances restricted by UN3077, UN3082, classified as Class 9 and packing group III, and allows transportation as NON-HAZARDOUS material.
- Ensures consistent **HIGH DOT PROFILE** in continual dispensing.
- Superior **HEAT SLUMP RESISTANCE** in the curing process.

Specifications

Contents Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

		Dispensing		
Product				JU-110
	Item	Condition • Reference • Unit		Result
Befc	Composition			Ероху
	Appearance · Color	Visual inspection		Paste · Brown
	Specific gravity	25°C, specific gravity cup method	1.25	
re ci	Viscosity	E type viscometer, 10rpm at 20°C for 2min. (Pas	·s)	55 ± 10
Jring	Non volatile	105°C, 180min (%	%)	> 99.0
	Shelf life	Below (10 °C)		6 months
	Copper plate corrosion	40°C, 95%RH, 96hrs		No abnormality
	Appearance, Color	Visual inspection		Polymerized • Brown
	Copper plate corrosion	40 °C, 90%RH, 96hrs ^{*1}		No abnormality
	Solder resistivity	SAC305 solder bath at 250°C x 10sec. dipping 3216R*1		No abnormality
Afte	Solvent resistivity	IPA, acetone x 1hr 3216R*1		No abnormality
er curing	Surface insulation resistance	Initial room temp., JIS Z 3197, comb electrode, 200 μ m application ^{*2} (Ω)	!)	>1.0X10 ¹³
		85°C, 85%RH, 1000hrs inside chamber*2		>1.0X10 ⁹
		85°C, 85%RH,1000hrs outside chamber*2		>1.0X10 ¹²
	Glass transition temperature	DSC 10°C /min. room temp. ~200°C 2nd run (°C	C)	95
	Boiled water absorption	1hr, JISK6911*3 (%	%)	<1.0

The measured values indicated above are not to be guaranteed.

*1: Curing condition 130°C x 60sec *2: Curing condition 130°C x 10min. *3: Curing condition 120°C x 10min.

Curing conditions vs. bonding strength

Contents

Features

Specifications

Curing condition

Vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

< Test method >

Print JU-110 using 150μm thick stencil with 0.8mmΦ aperture on a glass-epoxy board and place a 3216 (1206) chip resistor. Cure JU-110 and measure bonding strength with a bond tester after 30min. of curing.

< Test conditions >

Conditions	: 5mm/sec. of push speed, room temperature
PC board	: FR-4 material
Equipment	: Reflow simulator SMT SCOPE SK-5000 (Sanyo Seiko)
	Bond strength tester (Seishin Kogyo)
Test point	: 10 chips for each curing profile

Curing conditions vs. bonding strength

Recommended curing conditions: 1) At120 °C for \geq 90sec. 2) At 130 °C \geq 60sec. 3) At 140°C \geq 90sec.

Continual dispensability

Contents

Features

Specifications

Curing condition vs. Bonding strength

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

< Test method >

Measure dot diameter and height of each 5 deposits by microscope from 90° angle at around initial and every 2500 shots per a PC board and indicate the average figure in the graph.

< Equipments >

Microscope	: DIGITAL MICROSCOPE VHX-600 (KEYENCE)			
Dispensing machine	: 350PC,ML-808FX com-CE (Air pulse method Musashi Engineering)			
Temp. controller	: Processmate 6500 (Nordson EFD)			
PC board	: Glass-epoxy GE-4			
Syringe type	: PSY 10E (Musashi Engineering)			
Nozzle type	: 1. 22G single nozzle (needle length 15mm, internal dia. $0.41mm\Phi$)			
	2. 0.30mm dia. Precision-solid nozzle (Taper rolling)			

Continual dispensability – 22G single nozzle

Contents

Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

Continual dispensability – 0.30mm dia. Precision-solid nozzle

Contents

Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

< Equipment parameter >

Temperature vs. Viscosity, Thixotropy

Contents

Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

< Test method >

Measure viscosity and Ti value of JU-110 at each temperature indicated below.

< Test condition >

Temp.

(°C)

20

25

30

35

Equipment	: E-type viscometer RE-100U (Toki Sangyo)
Condition	: 10rpm after 2min. and 1rpm after 2min.
Rotor used	: 3º X R7.7(CORD-7)
Definition of Thixotropy	: Thixotropy index = Viscosity at 1rpm / Viscosity at 10rpm
Evaluation method	: Take an average of viscosities measured twice (Pa.s)

As temperature increases, viscosity decreases and Thixotropy index increases.

< Test method >

< Test condition >

Stencil thickness

Print formulation

Curing condition

Voltage applied

Measurement voltage

Test coupon

Voltage applied surface insulation resistance

Print JU-110 on the electrode of comb-shaped board (test coupon) and cure it. Confirm whether no evidence of electromigration and any other abnormalities are observed in the test coupon after leaving 1000hrs in a heat cycle test chamber with voltage of 50V applied. Also,

: Print JU-110 on the electrode of comb coupon.

Contents

Features

Specifications

Curing condition VS. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

measure SIR every certain hour as listed below.

: 200um : JIS type-||

: 50V

:100V

: 130 °C for 10min.

JU-110 secures excellent SIR properties.

No evidence of electromigration and other abnormalities

Heat slump

Contents

Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

< Test method >

Measure diameter of deposits before and after curing.

< Test condition >

Heat equipment	: Hot air reflow (Eightec)
Reflow profile	: 130°C for 90sec. (see graph on the right)
Measuring equipment	: DIGITAL MICROSCOPE VHX-600(KEYENCE)
PC board	: FR-4
Dispense condition	: Refer to slide 7,8 (22G single nozzle)
Target dispense diameter	: Around 0.8mm

No. of shot	Diameter before curing (mm)	Diameter after curing (mm)	Change rate (%)
1st	0.82	0.86	5
2nd	0.81	0.86	6
3rd	0.82	0.85	4
4th	0.82	0.86	5
Ave.	0.82	0.86	5

< Before curing >

< After curing >

Change in diameter of the deposits after curing was only 5% in average and excellent heat slump resistance is secured.

capacitors

Component misalignment

Contents

Features

Specifications

Curing condition VS. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Syringe & container

Handling guide

No shifting of components occurred.

< Test method >

Observe the number of misalignment of chip component after dispensing, placing chip component and curing JU-110.

< Test condition >

Heat equipment	: Hot air reflow oven (Eightec)
Reflow profile	: Refer to slide 11
PC board	: FR-4 (shown on the right)
Dispense condition	: Two dots for one chip at 0.9 mm pitch
Target dispense diameter	: Around 0.6mm
Components	: 3216 (1206)& 2012(0805) chip capaci
	for 20 pcs. each per PC board

< Judgment criteria >

Whether obvious misalignment described in "Example of misalignment" is observed by visual inspection.

Number of misalignment observed

	3216C	2012C
PCB1	0	0
PCB2	0	0
PCB3	0	0
Total	0/60	0/60

< Example of alignment >

Misplaced to long axis direction

Misplaced to rotational direction

12

3216C (1206)

2012C(0805)

stage working

Component misalignment

No component misalignment occurred.

2

No2

1

3

No3

6

No6

7

No7

8

No8

9

No9

Syringe & container type – Typical syringes available

4

No4

5

No5

Contents Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

Syringe & container type – Other containers

Syringe & container type

Contents

Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

No	KOKI container code / Manufacturer	Volume (ml)	No	KOKI container code / Manufacturer	Volume (ml)
1	S1 / EFD	5	12	PS 05S / Iwashita Engineering	5
2	S1 / EFD	10	13	PS 10S / Iwashita Engineering	10
3	S1 / EFD	30	14	PS 30S / Iwashita Engineering	30
4	S2 for solder paste	10	15	PSY 10E / Musashi Engineering	10
5	Hybrid Barrels / Semco	5	16	PSY 10E(Yellow plunger) / Musashi	10
6	M1	20, 25, 30	17	PSY 30E / Musashi Engineering	30
7	M1 without plunger	20, 25, 30	18	Tube	300g
8	M1-S/EFD	20, 25, 30	19	AD cartridge / Semco	360g
9	M1-SG (Magnet plunger) / EFD	20, 25	20	12oz cartridge / Semco	320g
10	F1 / Fuji Machine Manufacturing	30	21	Jar	1000g
11	XPF / Fuji Machine Manufacturing	10	22	ProFlow	200g

* No.1 - 17 are classified as syringes and No.18 – 22 are classified as other containers.

* Please contact us availability of syringes and containers other than the above listed.

Handling guide

Contents

Features

Specifications

Curing condition vs. Bonding strength

Continual dispensability

Viscosity & Thixotropy

Voltage applied SIR

Heat slump

Component misalignment

Syringe & container

Handling guide

	 Recommended dispensing parameters 		
	(1) Temperature of nozzle	: 30~33°C	
	(2) Temperature of syringe	: 28~35°C	
	(3) Ambiance		
	1. Temperature	: 22~27°C	
	2. Humidity	: 40~60%RH	
2) Recommended curing conditions:			
		120 °C x <u>></u> 90sec.	
		130 °C x <u>></u> 60sec.	
		140 °C x <u>≥</u> 45sec.	
	3) Shelf life	:6 months (0 ~ 10ºC)	

4) Note:

(1) Please keep 0~10°C when storing JU-110 in the refrigerator.

(2) Please recover JU-110 to room temperature before use.

Abrupt heating from refrigerated condition may cause unstable dispensability due to the expansion inside syringe.

(3) More than 180°C of heating is recommended for repairing.

(4) Please refer to MSDS for other detailed notes for handling JU-110.

* Manufacturing date can be obtained from the lot number.

